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Abstract 10 

The study of RNA modifications, today known as epitranscriptomics, is of growing interest. The N6-11 

methyladenosine (m6A) and 5-methylcytosine (m5C) RNA modifications are abundantly present on mRNA 12 

molecules, and impact RNA interactions with other proteins or molecules, thereby affecting cellular 13 

processes, such as RNA splicing, export, stability and translation. Recently m6A and m5C marks were found 14 

to be present on human immunodeficiency (HIV) transcripts as well and affect viral replication. Therefore, 15 

the discovery of RNA methylation provides a new layer of regulation of HIV expression and replication, 16 

and thus offers novel array of opportunities to inhibit replication. However, no study has been performed 17 

to date to investigate the impact of HIV replication on the transcript methylation level in the infected cell. 18 

We used a productive HIV infection model, consisting of the CD4+ SupT1 T cell line infected with a VSV-G 19 

pseudotyped HIVeGFP-based vector, to explore the temporal landscape of m6A and m5C epitranscriptomic 20 

marks upon HIV infection, and compare it to mock-treated cells. Cells were collected at 12, 24 and 36h 21 

post-infection for mRNA extraction and FACS analysis. M6A RNA modifications were investigated by 22 

methylated RNA immunoprecipitation followed by high-throughput sequencing (MeRIP-Seq). M5C RNA 23 

modifications were investigated using a bisulfite conversion approach followed by high-throughput 24 

sequencing (BS-Seq).  25 

Our data suggest that HIV Infection impacted the methylation landscape of HIV-infected cells, inducing 26 

mostly increased methylation of cellular transcripts upon infection. Indeed, differential methylation (DM) 27 

analysis identified 59 m6A hypermethylated and only 2 hypomethylated transcripts and 14 m5C 28 

hypermethylated transcripts and 7 hypomethylated ones. Furthermore, both m6A and m5C methylations 29 

were detected on viral transcripts and viral particle RNA genomes, as previously described, but additional 30 

patterns were identified.  31 

This work used differential epitranscriptomic analysis to identify novel players involved in HIV life cycle, 32 

thereby providing innovative opportunities for HIV regulation. 33 

 34 

 35 
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Introduction 36 

The presence of chemical modifications along RNA molecules has been known since the 70s (1). Only 37 

recently, however, new technologies allowed the identification and investigation of chemical 38 

modifications at transcriptome-wide level, allowing mapping of some modifications in mRNA (2, 3). Similar 39 

to epigenetics that focuses on the understanding of DNA and histone modifications in the regulation of 40 

transcription, epitranscriptomics investigates RNA modifications and offers a new layer of regulation, 41 

impacting and tuning cellular processes, including RNA splicing, export, stability and translation (4). 42 

Among these modifications N6-methyladenosine (m6A) and 5-methylcytosine (m5C) are found to be 43 

particularly abundant along mRNA molecules (5).  44 

Regulation of RNA modifications is under the control of specific cellular proteins (6, 7). The methylases 45 

METTL3-14 together with adaptors proteins act as m6A writer complexes of mRNA and catalyze the 46 

methylation of adenosine residues within the consensus motif DRA*CH (D = G/A/U, R = G/A, H = U/A/C, 47 

and A*= modified A). RNA binding proteins act as m6A readers, they bind methylated residues, thereby 48 

modulating the fate and metabolism of marked mRNA, i.e secondary structure, nuclear export, stability, 49 

splicing, and degradation. Demethylases such as ALKBH5 act as erasers of m6A, removing the chemical 50 

modification from transcripts.  51 

The role and identity of proteins involved in m5C turnover is less clear. The addition of m5C residues on 52 

mRNA molecules is carried out by the methylase NSUN2. M5C binding proteins seem to play a role in 53 

export and degradation, while to date no m5C-specific demethylase has been described yet. 54 

The role of RNA modifications is not limited to cellular RNA molecules. Indeed, recent studies highlighted 55 

the importance of RNA methylation on viral transcripts as well, including human immunodeficiency virus 56 

type 1 (HIV-1, hereafter abbreviated HIV) RNA, and its impact in regulating viral replication and gene 57 

expression.  58 

Lichinchi et al. reported 14 peaks of m6A modification in HIV RNA, including a m6A peak in the Rev 59 

response-element (RRE) region (8). They showed that RRE methylation increased Rev binding and 60 

facilitated nuclear export of viral RNA, thereby enhancing HIV replication. Kennedy et al. found four 61 

clusters of m6A modifications in the 3’ Untranslated region (UTR)  of HIV RNA and suggested that the 62 

overexpression of the m6A readers YTDHF1-3 likely stabilize viral mRNAs, thereby increasing viral 63 

replication (9). In contrast, Tirumuru et al. and Lu et al. showed that HIV RNA has m6A modifications in 64 

both 5’ and 3’ UTRs, as well as in gag and rev genes, and that overexpression of YTDHF1-3 proteins in cells 65 

inhibits HIV infection by decreasing viral genomic RNA (gRNA) and early reverse transcription products 66 

(10, 11). 67 
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A recent study from Courtney et al. investigate the role of m5C in HIV replication (12). Using an antibody-68 

based capture approach, they identified m5C-methylated residues in HIV gRNA from CEM T cell-derived 69 

virions and on cellular HIV transcripts. They identified the m5C mRNA writer NSUN2 as the writer 70 

responsible for HIV RNA m5C methylation and demonstrated a role of m5C in favoring alternative splicing 71 

and increasing HIV mRNA translation. 72 

Furthermore, it has been reported that upon HIV infection, the global cellular rate of m6A and m5C 73 

methylation increased (12, 13). However, an in-depth exploration of the differentially methylated genes 74 

upon HIV infection is missing.   75 

The discovery of HIV RNA methylation provides a new layer of regulation of HIV expression and replication, 76 

and thus a novel array of opportunities to inhibit replication. Investigating the epitranscriptomic landscape 77 

of HIV-infected cells will lead to a deeper understanding of HIV-induced RNA modifications and may help 78 

to identify novel host cells factors, HIV dependency factors (HDF) or restriction factors (HRF), involved in 79 

HIV replication. Indeed, HIV may modulate HDF and HRF to impact viral replication efficiency not only at 80 

the level of transcription but also at the level of methylation. 81 

Here we used the SupT1 CD4+ T cellular model infected with a VSV.G pseudotyped HIV-based vector 82 

encoding a GFP reporter (HIVeGFP) to explore the m6A and m5C modification pattern of cellular and viral 83 

transcripts in HIV-infected cells, as well as the virion genomic RNA, over time. We found that HIV Infection 84 

impacted the methylation landscape of HIV-infected cells by inducing an increased proportion of 85 

methylated cellular transcripts. Differential methylation (DM) analysis allowed identifying a few genes 86 

that may act as HDF or HRF and thus impact viral replication success. Furthermore, both m6A and m5C 87 

methylation was detected on viral transcripts and on viral particle packaged RNA genome, as previously 88 

described, but additional patterns were also detected.  89 

 90 

  91 
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Results 92 

Dynamic analysis of HIV-infected cells 93 

To explore the transcriptomic and epitranscriptomic landscape of HIV-infected cells, we infected SupT1 94 

cells (a CD4+ T-cell-line) with an HIV_GFP-based vector. At 12h, 24h and 36h post-infection, we (i) assessed 95 

the percentage of infected cells, monitoring GFP expression by FACS analysis; (ii) measured the amount 96 

of viral particles released in the supernatant and (iii) extracted the total RNA, purified polyA RNA and 97 

explored the m6A and m5C landscapes, by either methylated RNA immunoprecipitation sequencing 98 

(MeRIP-Seq) or Bisulfite sequencing (BS-Seq) respectively (Figure 1A-B).  99 

Infection success was monitored over time, following the accumulation of the virally-encoded GFP 100 

protein. At 12h post-infection (p.i.), as expected, the GFP expression was not yet detectable, while at 24h 101 

p.i. 37.3% of the cells were expressing detectable levels of GFP and 83.7% of the cells were GFP+ at 36h 102 

p.i., close to universal infection (Figure 1C). These results were consistent with viral particle production 103 

assessed by p24 measurement, which showed increasing viral production over time, with 0.064 x 106 104 

pg/ml at 12 h p.i., 0.150 x 106 pg/ml at 24h p.i. and 1.572 x 106 pg/ml at 36h p.i. (Figure 1D). 105 

 106 
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 107 
Figure 1. Dynamic analysis of HIV-infected cells. (A) Infection setting overview. SupT1 cells were either infected 108 
with 1 µg/106 cells p24 equivalent of HIV_GFP virus or left uninfected, divided into aliquots of 5*106 cells/ tube and 109 
spinoculated for 90 minutes at 1500 g and 20°C to allow nearly universal infection. Cells were then resuspended at 110 
a concentration of 106 cells/ml and further incubated. (B) Experimental design overview. At 12, 24 and 36h post–111 
infection, viral supernatant was collected to asses viral production by p24 ELISA; 300.000 cells were fixed and HIV 112 
infection success was assessed by evaluating HIV-encoded GFP expression by FACS analysis; the rest of the cells was 113 
used for RNA extraction and further analyses on m6A and m5C epitranscriptomic marks. (C) Example of FACS analysis 114 
at 12h, 24h and 36h post-infection to evaluate HIV infection success. Left: Histogram plots of FACS analyses showing 115 
the GFP intensity (x-axis) on the different samples, non-infected (NI) and infected (12h, 24h, 36h) samples. Right: 116 
Graphical representation of the proportion of infected cells (%GFP-positive cells) (D) Example of p24 ELISA to 117 
monitor viral particle production. Results are expressed as pg of p24 per ml of supernatant over time. 118 
 119 

HIV infection induced changes at gene expression level 120 

Transcriptome analysis was performed by RNA-Seq on polyA-selected RNAs over time on infected (HIV) 121 

and non-infected mock (NI) SupT1 cells. Altogether, a total of 17,676 genes out of 58,136 were detected 122 
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(12h NI: 11,908; 12h HIV: 10,980; 24h NI: 13,516; 24h HIV: 12,327; 36h NI: 15,004; 36h HIV: 11,827). In 123 

order to increase the specificity of our study we applied a supplemental filter to retain genes above 3 124 

counts per million (CPM). This filter was applied to each condition (Infected or non-infected) individually 125 

in order to avoid the introduction of bias upon differential gene expression analyses. Upon quality control 126 

and filtering, a total of 13,103 genes was retained for further analysis (Table S1). 127 

Principal component (PC) analyses separated samples in 2 distinct clusters according to infection condition 128 

and time progression, with the PC1 and PC2 representing respectively 67% and 21% of the variance (Figure 129 

S1A). Such clustering was not due to the presence of HIV transcripts, as upon their removal, sample 130 

distribution was maintained (Figure S1B). Among the 13,103 detected genes, 1,654 (13%) were 131 

overexpressed over time while 2,142 (16%) were downregulated. Analysis over time of NI samples only 132 

revealed that some genes were differentially expressed, likely due to cell culture conditions and cell 133 

growth, but independently from HIV infection (Table S1). In order to refine the analysis and to observe 134 

the bona fide impact of HIV infection, the time effect was modeled in a linear model and subtracted to 135 

the HIV effect, resulting in improved defined variance (Figure S1C). Thus, upon removal of the time effect, 136 

HIV infection alone modulated a total of 1,971 genes, upregulating 813 genes (6.2%) and downregulating 137 

1,158 genes (8.8%) (Table S1 and Figure 2). Gene ontology analysis shows that the 1,971 differentially 138 

expressed genes were enriched in the negative regulation of biological and cellular. These data are 139 

consistent with our previous study, performed using similar experimental conditions, revealing >75% 140 

concordance, and arguing for some degree of reproducibility and confidence (data not shown) (14).  141 

Overall, these data confirmed that HIV induced numerous changes at transcriptome level upon infection, 142 

that need to be taken into account for an accurate exploration of the epitranscriptomic landscape. Indeed, 143 

methylated genes that are strongly impacted by HIV in term of gene expression may introduce a bias to 144 

the analysis, i.e methylated genes overexpressed upon infection may be considered also as differentially 145 

methylated if no correction is applied.  146 

Hence, in order to explore the m6A and m5C epitranscriptomic landscape of HIV-infected cells 147 

independently from their expression level upon infection, all data were normalized to the corresponding 148 

gene expression.  149 



7 

 

 150 
Figure 2. HIV infection induced changes at gene expression level. (A) PCA representing 1,971 differentially 151 
expressed genes upon HIV infection only. HIV-infected samples (HIV) are represented as green filled circles, non-152 
infected samples (NI) as grey filled squares. Timepoints are depicted by the shade of the color. Time effect has been 153 
removed, HIV transcripts are not included. (B) Heatmaps of the top 100 (out of 813) downregulated (left) or top 100 154 
(out of 1,158) upregulated (right) genes upon HIV infection. The first column (purple) represents the average gene 155 
expression of each gene in the 3 normalized NI samples together, i.e. the darker the color, the higher the expression 156 
in the time-averaged NI samples. The log fold change of each gene compared to the average NI gene expression is 157 
depicted in shades of blue to red. 158 
 159 

HIV infection induced changes in cellular m6A profile 160 

We examined the landscape of the m6A RNA methylome during HIV infection at 12h, 24h and 36h post-161 

infection by MeRIP-Seq using either an m6A specific antibody or a non-specific IgG antibody as control 162 

(15). After pull down and elution, quality and quantity of samples were verified on a fragment analyzer 163 

(Figure S2A). The immunoprecipitated RNA was used for library preparation and sequencing; of note, the 164 

amount of RNA retrieved from the control condition was too low to perform library preparation and 165 

sequencing.  166 

We obtained a range of 26-72 million reads per condition (Figure S2). After quality control and filtering, 8 167 

to 46 million clean reads were kept and further mapped to the HIV and hg38 human genomes, with 168 

alignment success typically exceeding 99%. 169 
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M6A modified regions were identified using the peak calling package MACS2. A total of 17,657 peaks 170 

mapping on 7,724 genes across all samples were retrieved representing 59% of the overall detected genes 171 

(13,101) (Figure 3A and Table S2). We looked for the presence of the m6A consensus motif DRACH 172 

previously identified and detected it in 17,527 peaks out of 17,657 (99.3% of the peaks) (Figure 3B) (5). 173 

We further analyzed the 17,527 m6A peaks to identify, independently, additional consensus sequences 174 

for m6A methylation. For this, 20 nucleotides surrounding the center of each m6A peak were examined 175 

for motif retrieval, and revealed 2 additional highly enriched motifs, WGGAM and GSAGGAGG (Figure 176 

S3A); these motif have been previously described as m6A binding motif form Zhang et al.(16). As described 177 

previously, m6A peaks were globally enriched toward the  3’ end of transcripts, and this distribution is not 178 

altered upon HIV infection (Figures 3C and S3B) (17). M6A modifications were reported to be enriched in 179 

long exons (>140 nt), however, upon normalization for exon width, we could not observe significant 180 

changes in m6A distribution with only a slight enrichment in m6A peak frequency in exons >500nt (Figure 181 

S3C)(17). Upon PC analysis of the m6A peaks retrieved in all samples, we could observe a separation 182 

according to time and infection condition, suggesting an impact of HIV infection on the m6A methylation 183 

profile (Figure 3C). 184 

As m6A methylation can occur at different sites along the mRNA molecule, analysis was performed on 185 

differentially methylated peaks. A total of 5,957 peaks corresponding to 3,615 transcripts, were found as 186 

being hypermethylated upon HIV infection, with 713 peaks at 12h; 4,696 at 24h and 1,342 at 36h post 187 

infection (corresponding to 558, 2,718 and 814 transcripts at 12h, 24h and 36h respectively). Only 777 188 

hypomethylated peaks (532 transcripts) were identified, with 147, 247 and 432 peaks at 12h, 24h, 36h 189 

post infection, corresponding respectively to 109 transcripts at 12h, 181 at 24h and 279 at 36h post 190 

infection (Table S3 and Figure 3D). 191 

We identified 87 m6A peaks, representing 59 different transcripts that were commonly hypermethylated 192 

in infected cells at 12h, 24h and 36h post-infection. However, only 2 peaks, identified as the stromal 193 

antigen 1 (STAG1) and the solute carrier family 6 member 19 (SLC6A19) respectively, were found to be 194 

commonly hypomethylated upon infection at the 3 timepoints (Table S2 and Figure 3D to F). Gene 195 

ontology analysis of the 61 commonly differentially methylated mRNAs did not reveal any statistically 196 

significant enrichment in biological process (data not shown). However, we noticed the presence of 4 out 197 

of the 7 GTPase Immuno-Associated Proteins (GIMAP) within the 198 

commonly differentially methylated transcripts and overall 6 GIMAPs among the totality of the 199 

differentially methylated transcripts (GIMAP1, GIMAP2, GIMAP4, GIMAP5, GIMAP6, GIMAP7). GIMAPs 200 
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are involved in response to pathogens and have a prominent role in T cell survival and differentiation, 201 

consistent with a putative role of these genes on HIV replication (18).   202 
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 204 
Figure 3: HIV infection induced changes in cellular m6A profile. (A) Pie-Chart representing the proportion of m6A 205 
methylated transcripts among the totality of detected transcripts (13,103). (B) Representation of the enriched m6A 206 
DRACH motif among the samples. (C) Histogram plots showing on the x-207 
axis genes normalized for their length and divided into 30 bins, and for each bin fraction of the gene, the number of 208 
m6A residues. (D) PCA of the variance of m6A peaks among all samples. HIV-infected samples are represented as 209 
green filled circles, non-infected samples as grey filled squares. Timepoints are depicted by the shade of the color. 210 
HIV transcripts are not included. (E) Venn-Diagrams showing hypermethylated (upper panel) or hypomethylated 211 
(lower panel) m6A peaks upon infection. Values in black represent the number of m6A methylated peaks, values in 212 
grey into brackets represent the number of corresponding transcripts (F) Heatmap of the commonly hyper/hypo 213 
methylated transcripts upon infection at the three timepoints. The 61 differentially methylated genes are shown. 214 
The average methylation level of the non-infected cells is represented in violet in the first column, and was used for 215 
normalization. Differential methylation was then normalized to the average methylation intensity of each transcript. 216 
(G) Examples of an hypermethylated (upper panel) and an hypomethylated (lower panel) transcript showing m6A 217 
peak intensity and distribution across samples using IGV viewer. 218 
 219 
HIV infection induced changes in cellular m5C profile 220 

To obtain a transcriptome-wide landscape of m5C profiles, we performed BS-Seq on RNA samples purified 221 

from HIV-GFP infected and non-infected SupT1 cells (19). Compared to antibody-based techniques, 222 

bisulfite conversion allows higher resolution and higher sensitivity, identifying converted and non-223 

converted cytosines at single nucleotide resolution and providing estimations of the methylation rate of 224 

each C residue. To assess efficiency of bisulfite conversion treatment, we used the human 28S rRNA as 225 

positive control. Indeed, the C4447 residue of this rRNA is known to be methylated with a frequency of 226 

100%.  227 

Therefore, we spiked-in polyA-depleted RNA in each sample to ensure rRNA representation and presence 228 

of 28S rRNA in particular. After bisulfite conversion, a sample aliquot was used for RT-PCR and Sanger 229 

sequencing of the C4447 encompassing region of the 28S rRNA (Figure S4A). For all samples we observed 230 

a complete C-T conversion along the fragment suggesting the absence of methylation on these C residues, 231 

except for the C4447 residue that remains unchanged, confirming the methylation status of this specific 232 

C residue (Figure S4B).  233 

After library preparation and high-throughput sequencing we obtained a range of 23-43 million 234 

reads/sample (Figure S4C) with a low representation of C and an over-representation of T, consistent with 235 

successful unmethylated C-to-T bisulfite conversion (Figure S4D). Reads were processed with the meRan-236 

TK package, specific for RNA bisulfite conversion, taking into account the converted reads to allow genome 237 

alignment and mapping (20).  238 

To further assess the conversion rate in each sample, we also included a commercially available pool of 239 

non-methylated RNA sequences (ERCC spike-in control) in each sample. ERCC sequence analysis showed 240 

an average conversion rate of 99.47%, suggesting that bisulfite treatment was efficient (Figure S4E). Due 241 
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the lower quality of bisulfite converted reads with respect to non-converted ones, only transcripts covered 242 

with more than 30 reads were retained for further analysis. We could observe different methylation rates 243 

among transcripts, hence, to improve the quality of the differential methylation analysis, only cytosines 244 

displaying a methylation rate > 20% were used (Table S4). Overall, we identified 2,267 C residues, 245 

corresponding to 947 transcripts, present across all the non-infected timepoints with a methylation rate 246 

higher than 20% (7% of overall detected transcripts), 567 m5C with a methylation rate higher than 50% 247 

and 79 with methylation rate >80% (Figure 4A). To date, no consensus was described for m5C methylation. 248 

We thus analyzed 10 nucleotides surrounding m5C residues displaying a methylation rate greater that 80% 249 

and we identified a putative consensus sequence in 500 out of 788 highly methylated m5C, representing 250 

63.4% of total hits (Figure 4B).  251 

Consistent with previous studies, m5C residues were enriched toward transcript ends and this distribution 252 

was not globally affected by HIV infection (Figures 4C and S6) (21).  253 

Principal component analysis performed on the totality of m5C shows a separation according to time and 254 

infection with 32.3% and 24.8% of the variance explained by PC1 and PC2 respectively. This data remained 255 

unchanged upon analysis with a more stringent filter for methylated cytosine proportion (conversion rate 256 

>50% and conversion rate >80%) (Figure S7). Altogether, our data suggest that HIV affected the m5C profile 257 

of cellular transcripts. Upon analysis of differentially methylated m5C between infected and non-infected 258 

cells, we could identify 1,759 hypermethylated m5C in infected cells at 12h; 822 at 24h and 1,251 at 36h 259 

post infection (corresponding to 622, 377 and 434 hypermetylated transcripts, respectively) (Table S4). 260 

Among them 26 m5C mapping on 13 different transcripts (and one unidentified transcript) were commonly 261 

hypermethylated in infected cells (Figure 4D). We could also identify 675 m5C positions hypometylated in 262 

infected cells at 12h; 1,233 at 24h and 1,041 at 36h post infection (corresponding to 348, 438 and 459 263 

hypomethylated transcripts respectively) with 8 m5C mapping on 7 transcripts commonly hypomethylated 264 

upon infection (Figure 4D). The hypermethylated and hypomethylated genes common at the three 265 

timepoints are displayed in the heatmap (Table S5 and Figure 4E). 266 

Although no statistically significant enrichment was identified by gene ontology analysis, 5 out of the 21 267 

genes (23,8%) identified as differentially methylated were already described as interacting with HIV or 268 

contributing to its replication. 269 

 270 
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 271 
Figure 4. HIV infection induces changes in cellular m5C profile. (A) Pie-Chart representing the proportion of m5C 272 
methylated transcripts among the totality of detected transcripts (13,103) (B) Identification of a putative consensus 273 
motif for C methylation. Logo representation of the predicted m5C motif surrounding C residues displaying a 274 
methylation rate >80%. (C) Histogram plots showing on the x-axis genes 275 
normalized for their length and divided into 30 bins, and for each bin fraction of the gene, the number of 276 
m5C residues. Only genes containing a C-T conversion rate >50% were used. (D) PCA of the variance of m5C peaks 277 
among all samples. HIV-infected samples (HIV) are shown as green filled circles, non-infected samples (NI) as grey 278 
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filled squares. Timepoint progression is depicted by the shade of the color. HIV transcripts are not included. (E) Venn-279 
Diagrams showing hypermethylated (upper panel) or hypomethylated (lower panel) m5C residues upon infection.  280 
Values in black represent the number of m5C residues, values in grey into brackets represent the number of 281 
corresponding transcripts. (F) Heatmap of the commonly hyper/hypo methylated transcripts upon infection at the 282 
three timepoints. The 21 differentially methylated genes are shown. The average methylation level of the non-283 
infected cells is represented in violet on the left, and was used for normalization. Differential methylation was then 284 
normalized to the average methylation intensity of each transcript. (G) Examples of a m5C hypermethylated (upper 285 
panel) and a m5C hypomethylated (lower panel) transcript upon infection using IGV viewer. Each C residue in the 286 
sequence is indicated as a red bar and the proportion of methylated C is shown in blue (exact proportion values are 287 
indicated for the statistically significant residues). The significant methylated C residues are highlighted by a pink 288 
arrow in the sequence displayed above the tracks.   289 
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HIV RNA is both m6A and m5C methylated 290 

Although m6A and m5C methylation marks were previously reported along HIV RNA molecule, these 291 

analyses were performed at a unique time point post-infection and did not consider the putative dynamics 292 

of methylation throughout HIV life cycle progression (8-12). We thus took advantage of our temporal 293 

design to assess the dynamics of m6A and m5C epitranscriptomic marks in HIV-infected cells. Furthermore, 294 

we compared the methylation profile between intracellular HIV transcripts and vRNA isolated from viral 295 

particles. 296 

Upon m6A analysis of intracellular HIV RNA molecules, we identified 7 peaks that were conserved at all 297 

timepoints, with enrichment of m6A peaks toward the 3’ end of the viral sequence (Table S6 and Figure 298 

5A). Increased methylation at the 3’ region was consistent with previous studies identifying the 3’ end as 299 

a methylation hotspot and as a binding site for cellular m6A readers (9). We also confirmed the presence 300 

of two previously reported m6A regions in Pol (8). However, we identified 2 additional methylated regions, 301 

respectively located between Pol and Vif on one hand, and in Vpu on the other hand. Finally, we detected 302 

at 36h post-infection a unique peak at the 5’ end of the HIV genome, on the packaging signal sequence 303 

psi (ψ), that is also present in the viral particles (Table S7 and FigureS8A).  304 

The methylation pattern found on RNA extracted form viral particles is similar to the one present on 305 

intracellular HIV transcripts with the exception of the peak found on Vpu in close proximity to the splicing 306 

donor site.  307 

Using a bisulfite conversion approach, we confirmed that cellular HIV RNAs were indeed methylated, 308 

however with minimal overlap with methylation hotspots described by Courtney et al. (Table S6 and 309 

Figure 5B) (12). Upon filtering of low coverage regions and statistical analysis we identified 26 m5C at 12h 310 

post-infection, 30 m5C at 24h post-infection and 7 highly methylated m5C residues at 36h post-infection 311 

covered by at least 100 reads. 312 

Overall, we identified 7 m5C residues, common to the 3 timepoints, and clustering all in the vicinity of the 313 

HIV gag-pol ribosomal frameshift signal with a methylation rate >50%. These highly methylated cytosine 314 

are present in viral particles as well as at all timepoints (Figure S8B and Table S7). The mechanism and the 315 

role of this time-dependent effect of m5C methylation on the HIV RNA sequence needs further 316 

investigation. 317 

 318 
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 319 
Figure 5. HIV RNA is both m6A and m5C methylated. Methylation pattern of HIV RNA molecules, isolated from 320 
infected cells over time or from viral particles at 36h post-infection. HIV genome organization is depicted on top of 321 
the panels and methylation marks are indicated as green color rectangles (A) or pink triangles (B) above the genome, 322 
respectively. Detailed read coverage is displayed for each individual sample as tracks below the genome. (A) 323 
Identification of m6A peaks on HIV RNA. Input (gray) and m6A immunoprecipitated samples (green) are shown. 324 
Putative m6A peak calling was performed with MACS2 package after subtraction of the input background (overlay). 325 
Statistically significant peaks are highlighted by a red box, with color shading proportional to the q value (m6A peak 326 
track). (B) Identification of m5C on HIV RNA. Coverage of HIV genome upon conversion (gray) and detection of m5C 327 
(pink) are shown. M5C are presented as proportion of converted C. Bar height is proportional to the percentage of 328 
methylated C in the reads covering the position. The track height is set to 100%. M5C calling was performed with 329 
MACS2 package. Statistically significant residues are highlighted by a red box, with color shading proportional to the 330 
q value.  331 
 332 

Discussion 333 

Epitranscriptomics is a fast growing field of biology which highlighted the role of m6A and m5C 334 

modifications as specific mRNA marks mostly involved in RNA structural changes and gene expression 335 

regulation. In the present study, we explored (i) the cellular m6A- and m5C-marked transcriptome 336 

landscape, (ii) the HIV-induced modifications of the cellular epitranscriptome, and (iii) the position of 337 

these specific epitranscriptomic marks on HIV RNA molecule. 338 

Using a SupT1 T cell line infected with a VSV-G pseudotyped HIV-based virus, we detected globally 22.5% 339 

transcripts with high confidence (13,103/58,136 genes), among which 15% (1,971/13,103) were 340 

differentially expressed, with 813 genes being upregulated and 1,158 downregulated genes in HIV-341 

infected cells compared to mock-treated cells. The analysis of the epitranscriptome, with the tools 342 

available today, revealed that 58.9% of genes carried m6A methylation (7,724/13,103) (Figure 3B), while 343 
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m5C marks were present on 7% (942/13,103) of transcripts (Figure 4B). These epitranscriptomic marks 344 

were mostly enriched towards 3’ ends of transcripts, as shown previously, and this distribution was not 345 

affected by HIV infection. Furthermore, our data recapitulated the lower abundance of m5C methylation 346 

compared to m6A modification on mRNA molecules (4). In contrast, in presence of HIV, methylation level 347 

globally increased and we identified 62 differentially m6A-methylated transcripts (59 hypermethylated 348 

and 2 hypomethylated) as well as 21 differentially m5C-methylated transcripts (14 hypermethylated and 349 

7 hypomethylated), common at the three analyzed timepoints. Our data are partially consistent with 350 

Tirumuru et al., who observed a 4-7 fold-increase of m6A methylation in cells infected with a WT virus, 351 

but not upon VSV-G-pseudotyped virus infection, suggesting an Env-mediated signaling increase in 352 

methylation (13). The basis of this discrepancy is likely due to differences in the experimental design as 353 

Tirumuru et al. used a global approach, assessing the level of methylation by m6A dot-plot on Jurkat T-cell 354 

line, while we used the MeRIP-Seq antibody-based technique on SupT1 cells. 355 

Further analysis of the 64 m6A-DM transcripts did not reveal any particular enrichment upon gene 356 

ontology analysis. Nevertheless, we detected 4 out of 7 GIMAPs in the common list of DM transcripts, and 357 

two additional hypermethylated GIMAP members in individual timpoints. GIMAPs are immune-associated 358 

proteins displaying a GTPase activity. They have been involved in response to pathogens and have a 359 

prominent role in T cell survival and differentiation. The role of GIMAPs in HIV life cycle has never been 360 

reported so far and remains to be further characterized. 361 

The analysis of the 21 m5C-DM transcripts identified a few genes whose products were previously 362 

described as interacting with HIV proteins and affecting the viral life cycle. These include Enolase 1 (ENO1), 363 

previously described as hampering HIV reverse transcription (22); the splicing factor 3b subunit 2 (SF3B2), 364 

shown to interact with Vpr, thereby impairing splicing of some cellular pre-mRNA and impacting Vpr-365 

mediated G2 cell cycle arrest (23-25); the protein phosphatase 2 scaffold subunit A beta ( PPP2R1B), 366 

associating with Tat and involved in Tat-mediated apoptosis (26); CD300A, a surface glycoprotein involved 367 

in immune response signaling shown to be associated with HIV disease progression markers (27, 28), and 368 

shown to be downregulated by Vif (29); and von Hippel Lindau tumor suppressor (VHL), a protein involved 369 

in the degradation of hypoxia-inducible-factor and predisposing to cancer when impaired, also known to 370 

mediate HIV integrase degradation thereby affecting HIV expression at post-integration steps (30). The 371 

role of these methylations on protein expression remains to be investigated, as well as the impact on HIV 372 

replication. Nevertheless, these data provide a first roadmap of the impact of HIV on cellular m5C-373 

transcriptome. 374 

Altogether, these findings suggest that HIV modulates the host methylation profile of the transcriptome 375 
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and we can thus hypothesize that the modified transcripts are likely to affect the viral life cycle, either 376 

promoting it or inhibiting it. Differentially methylated transcripts may thus represent novel HIV-interacting 377 

candidate proteins that should be further investigated and characterized. 378 

Similar to cellular transcripts, the HIV virion RNA molecule is methylated. We identified 7 m6A peaks, that 379 

were conserved over time, suggesting a rather stable methylation profile. We observed an enrichment of 380 

m6A at the 3’ of the HIV genome, confirming data from previous studies (8, 9, 11). Our data did not retrieve 381 

the two m6A peaks previously described to be located in the RRE region, and implicated in enhanced Rev-382 

RRE binding and nuclear export (8). Overall, the studies aiming at investigating m6A modifications display 383 

minimal overlaps, likely due to protocol differences as mentioned above, and poor resolution of the m6A 384 

identification approach. Upon comparison between intracellular HIV transcripts and virion RNA we could 385 

observe that the m6A peak present on Vpu and in close proximity of the HIV major 5’ splicing donor (SD) 386 

was found only in viral transcripts. Maintenance of the SD hairpin secondary structure is essential to 387 

ensure correct splicing of viral transcripts by controlling accessibility of the 5’ splicing site for the splicing 388 

machinery (31). Destabilization of the hairpin loop results in an increase of splicing while its stabilization 389 

has the opposite effect. We could speculate that the presence of m6A in proximity of the site may induce 390 

a change in secondary structure allowing easier access to the splicing machinery, while absence of 391 

methylation favors the unspliced HIV RNA form. Moreover, the m6A peak present in the 3’UTR region in 392 

all intracellular viral transcripts is weak or absent in the viral particle genomic RNA, and could suggest a 393 

signal contributing to selective packaging of unmethylated HIV RNA genome (Figure S8). 394 

Furthermore, we identified 2 m6A peaks, present both on intracellular HIV transcripts and on packaged 395 

HIV RNA genome, encompassing the 2 major polypurine tracts (PPT). Although PPT are known for being 396 

more resistant to RNAseH-mediated degradation during reverse transcription, the identification of PPT  397 

methylation may suggest an additional mechanism providing the observed increased resistance (32). 398 

No data were available on m5C methylation of HIV transcripts until very recently. Using an  399 

immunoprecipitation-based approach to investigate the m5C epitranscriptomic mark,  Courtney et al. 400 

identified 18 m5C peaks along HIV RNA with an enrichment toward the 3’ end of the genome (12). Using 401 

a bisulfite conversion (BS-Seq) approach, we confirmed the presence of this modification on intracellular 402 

and packaged genomic viral RNAs and identified 7 conserved, highly methylated m5C residues, but with 403 

only minimal overlap regarding the exact positions of the epitranscriptomic marks. Using a temporal 404 

design, we could describe a C cluster at the beginning of gag and surrounding the HIV ribosomal frameshift 405 

signal that regulates Gag and Gag-Pol precursor protein synthesis. This signal is indeed essential to 406 

maintain a tight regulation of the 20:1 Gag/Gag-Pol translation ratio and ensure successful HIV replication 407 
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(33). The identification of an m5C hotspot close to the frameshift signal may thus point to an additional 408 

mechanism involved in the post-transcriptional regulation of Gag and Gag-Pol production.  409 

Although m6A and m5C methylations are considered as the most abundant modifications on mRNA 410 

molecules, additional epitransciptomic marks may be present and impact HIV-host interactions, such as 411 

2’-O-methylations (12, 34). Indeed, Ringeard et al. recently showed that HIV transcripts can be methylated 412 

at the 2’ hydroxyl of ribose, hence 2’-O-methylation, via a specific methyltransferase, FTSJ3, specifically 413 

recruited by TAR-RNA binding protein (TRBP) (34). They identified 17 A or U residues containing this 414 

specific methylation on the viral RNAs. They demonstrated that 2’-O-methylations were important for 415 

viral transcripts to be recognized as endogenous RNA mimics and thus escape innate immune sensing and 416 

degradation. Differential analysis of 2’-O-methylation marks upon HIV infection may provide additional 417 

insights in HIV life cycle (12, 34). 418 

Overall, this study provided an overview of m6A and m5C modifications on both viral and cellular 419 

transcriptomes over time, identifying the dynamic impact of HIV infection on cellular RNA modifications, 420 

and identifying novel candidates as putative factors involved in HIV replication. Further investigation of 421 

these candidates, using overexpression or knock-out assays, may reveal a role as HIV dependency factor 422 

or inhibitory factor. 423 

The existence of RNA modifications and their potential modulation by HIV proteins offer a new layer of 424 

opportunities to hijack the host cellular machinery to promote viral replication and evade the innate 425 

immune response. Therefore, identifying all types of differentially methylated or modified transcripts 426 

upon HIV infection may lead to the uncovering of novel host factors involved the HIV-host interplay. 427 

Methods 428 

Cells and plasmids 429 

Human Embryonic Kidney 293T (HEK293T) cells were cultured in D10 (Dulbecco’s modified Eagle medium 430 

(DMEM) containing 1x glutamax (#61965-026, Invitrogen), supplemented with 10% heat-inactivated Fetal 431 

Bovine Serum (FBS) and 50 µg/ml Gentamicin) and maintained at a maximal confluence of 80%.  432 

SupT1 cells are human T cell lymphoblasts. They were cultured in R10 (RPMI 1640 with 1x glutamax 433 

(#61870-010, Invitrogen) containing 10% heat-inactivated FBS and 25 µg/ml Gentamicin) and split twice 434 

a week at 0.5x106 cells/ml to maintain a maximal concentration of 1x106 cells/ml.  435 

The following DNA constructs were used in this study: For viral infection, we used pNL4-3ΔEnv-GFP (NIH 436 

AIDS Research and Reference Reagent program, Cat. #11100) that encodes the HIV vector segment with 437 
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a 903 bp deletion in the env ORF in which the gfp ORF was introduced. For pseudotyping, the plasmid 438 

pMD.G coding for the vesicular stomatitis virus G envelope (VSV-G) was used (35).  439 

 440 

HIV production and infection 441 

For production of HIV-based vector NL4-3-∆Env-GFP/VSV-G (named hereafter HIV-eGFP), 2.5 million of 442 

HEK293T cells were seeded in 10 cm dishes and incubated over night at 37°C/5% CO2. The next day, cells 443 

reached about 60 % confluence and were transfected with a total of 10 μg of DNA, i.e. 7.5 μg of pNL4-3-444 

∆Env-GFP and 2.5 μg pMD2.G coding for the VSV-G envelope, using the jetPRIME kit (Polyplus 445 

transfection) and according to manufacturer’s instructions. Briefly, DNA was diluted into 500µl of supplied 446 

buffer, mixed with 30µl of jetPRIME reagent and incubated 10 minutes at room temperature. Transfection 447 

mixture was then added to the cell dropwise. Fifteen hours after transfection, cells were washed once 448 

with D10 and incubated for 33h in 293SFM medium (#11686029, Thermo Fisher Scientific). HIV-GFP 449 

particles were harvested 48h after transfection, filtered through 0.45 µm and concentrated on Centricon 450 

units (Centricon Plus-70/100K, Millipore). Viral titers were measured by HIV p24 Enzyme-linked 451 

immunosorbent assay (ELISA) kit (Innogenetics). 452 

SupT1 cells (5×106 cells) were either mock-treated or infected with 5 µg p24 equivalent of HIV-GFP by 453 

spinoculation at 1500 g for 30 min at 20°C, in presence of 4 µg/ml polybrene (Sigma), in 400 µl final volume 454 

in 14 ml round bottom polypropylene tubes - a total of 50 tubes were used for mock condition and 50 455 

tubes for infected condition to obtain a total of 250 million cells for each condition. Cells were then 456 

pooled, washed three times with culture medium, resuspended at 106 cells/ml in R-10 and further 457 

incubated in T75 flasks (8x31ml). 458 

At 12, 24 and 36 hours post-infection, cellular samples (∼50×106 cells in 50 ml) were collected for viral 459 

and cellular measurements. Briefly, 0.5 ml of the cell cultures were used for cell counting and viability 460 

assessment by trypan blue exclusion, using a ViCell Coulter Counter (Beckman Coulter). Remaining cells 461 

were centrifuged at 300 g for 10 min. Viral supernatant was collected: 950 µl were mixed with 50 µl NP-462 

40 (0,5%)  and stored at −80°C until particle concentration assessment by p24 ELISA (Innogenetics) while 463 

the rest of the supernatant was concentrated by filtration on Centricon units (Centricon Plus-70/100K, 464 

Millipore) and frozen at -80°C for RNA extraction. Cells were washed with R10 once, centrifuged again, 465 

resuspended in 5 ml R10 (∼107 cells/ml) and separated as follows: (i) 50 µl of cell suspension were 466 

resuspended in Cell Fix 1× (Becton Dickinson) for assessment of GFP expression and infection success by 467 

FACS analysis (Accuri C6 FACS, Becton Dickinson), (ii) aliquots of 1 ml of cell suspension (∼107 cells) were 468 
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centrifuged, resuspended in 1ml of Trizol reagent (#15596026, Invitrogen) and stored at -80°C for further 469 

RNA extraction and transcriptome analyses. 470 

 471 

RNA extraction 472 

Total RNA was extracted from both concentrated viral particles and cells using Trizol Reagent (#15596026 473 

Invitrogen) according to suppliers’s instructions. Briefly, samples were thawed at room temperature and 474 

200µl chloroform were added to the mixture. Samples were centrifuged for 30min at 10.000g, at 4°C and 475 

the RNA–containing, aqueous (upper) phase was transferred to a fresh tube and subjected to precipitation 476 

with 0,5 ml of isopropanol for 1h at -80°C. Samples where then centrifuged for 10 min at 12000g, washed 477 

once in 1ml of 75% ethanol and resuspended in 50 μl H2O.  478 

For poly(A) RNA purification, 200μl Dynabeads Oligo(dT)25 (#61005, Life Technologies) were washed twice 479 

with 1ml of  binding buffer (20 mM Tris-HCl, pH 7.5, 1.0 M LiCl, 2 mM EDTA ) and incubated with aliquots 480 

of 75 µg RNA in 100µl final volume for 15 minutes at room temperature on a wheel. Samples were then 481 

washed twice with 500µl washing buffer (10 mM Tris-HCl, pH 7.5 ,0.15 M LiCl, 1 mM EDTA 10 mM Tris-482 

HCl, pH 7.5), and subjected to a second incubation with the same RNA sample. Poly(A) selected mRNA 483 

was recovered through elution by a 2 min incubation with 20μl Tris-HCl (10mM) at 80°C. PolyA depleted 484 

RNA from the 36h NI samples was purified and kept as a spike-in control for bisulfite conversion 485 

experiments. RNA was purified and concentrated using a column-based kit (#RNA1013, Zymo Research), 486 

fragmented during 15 min at 70°C using Ambion RNA Fragmentation Reagents (#AM8740, Life 487 

Technologies), in order to obtain fragment of 100-200nt and purified again as above. An aliquot of 488 

fragmented RNA (100 ng) was retained as a control for RNA sequencing (input) while the rest was used 489 

for MeRIP-Seq and bisulfite conversion allowing m6A and m5C analysis respectively. At every step, integrity 490 

and peak size of the RNA was assessed on a Fragment Analyser (AATI #DNF-472).  491 

 492 

m6A-modified RNA immunoprecipitation sequencing (MeRIP-Seq) 493 

For MeRIP (#17-10499, Millipore), 5 μg of fragmented mRNA was incubated with 5 μg of anti-m6A antibody 494 

or anti-IgG antibody (negative control) previously coupled with 25 µl of A/G-coated magnetic beads in 500 495 

µl IP Buffer for 2h at 4°C following manufacturer’s recommendations. Samples were placed on a magnetic 496 

stand for 5 minutes and the unbound RNA was discarded. The beads were then washed three times with 497 

500µl IP buffer and bound RNA was released by two rounds of elution of 1 hour each with 20mM of free 498 

m6A peptides (7mM N6-Methyladenosine.5’-monophosphate sodium salt). RNA was purified and 499 

concentrated in 20µl of water, using a column-based kit (# RNA 1013, Zymo Research). We recovered 500 
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normally between 15 and 25ng of associated RNA from samples immunoprecipitated with a specific anti-501 

m6A antibody. Libraries for sequencing (input RNA-Seq and MeRIP-Seq) were prepared using Illumina 502 

TruSeq Stranded mRNA kits (#20020594, Illumina), starting the protocol at the Elute-Prime-Fragment 503 

step, and with a protocol modification consisting in incubating the samples at 80 °C for 2 minutes to only 504 

prime but not further fragment the samples. Samples were sequenced on a HiSeq 2500 Illumina on 4 505 

lanes, using single end reads of 125nt (Genomic Technology Facility (GTF), University of Lausanne). 506 

RNA-Seq data were aligned to a combined hg38 (chr 1-22, X, Y) and HIV genome FASTA using the STAR 507 

aligner, and keeping only uniquely mapping reads. Data were analyzed in collaboration with the Swiss 508 

Institute of Bioinformatics (SIB) and the Genomic Technology Facility (GTF), University of Lausanne. 509 

 510 
RNA bisulfite conversion sequencing (BS-Seq) 511 

Bisulfite treatment was performed using the EZ RNA methylation Kit (#R5001, Zymo Research). Briefly, 512 

500 ng of poly(A)-selected RNA were spiked-in with 500pg of polyA-depleted RNA (to ensure rRNA 513 

representation) as a control for bisulfite conversion. mRNA was mixed with 130μl of RNA conversion 514 

solution and converted using three cycles of 10 min denaturation at 70°C followed by 45 min at 64°C in a 515 

final volume of 200 µl. After conversion, mRNA was bound to a RNA purification column and desulfonated 516 

by addition of 200μl RNA Desulfonation Buffer during 30 minutes at room temperature. Purification was 517 

performed using the kit according to manufacturer’s recommendations. RNA quantity and quality was 518 

determined by analysis on a Fragment analyser (AATI) using the High sensitivity RNA kit (#DNF-472, AATI). 519 

The efficiency of bisulfite treatment was tested by RT-PCR-mediated bisulfite analysis of spiked-in rRNA 520 

(C4447 in 28S rRNA is 100% methylated). Briefly, 4µl of bisulfite converted RNA were subjected to RT with 521 

High Capacity cDNA reverse transcription kit (Applied Biosystems #4368814) according to manufacturer 522 

procedure and incubated with the following program: 25°C – 10 min; 37°C – 120 min; 85°C 5 min. PCR was 523 

performed on 6µl of cDNA using the AccuPrime™ Pfx SuperMix (Thermo Fisher Scientific # 12344-040) 524 

with primers annealing on the 28S ribosomal RNA (primerH28SF, H28SR table1). PCR products were 525 

sequenced by Next Generation Sequencing, and resulting sequences aligned to the Human 28S. Cytosine 526 

in position 4447 was used as control of non-converted cytosine, while surrounding cytosines were used 527 

as a control of C-T conversion. 528 

Libraries for sequencing were prepared using the Illumina TruSeq Stranded mRNA kit as described above 529 

(i.e. entering the protocol at the Elute-Prime-Fragment step and with the modification) and sequenced on 530 

two lanes of Illumina HiSeq 2500 as described above. 531 

 532 
FACS analysis 533 
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FACS analysis of infected cells was performed on a BD Accuri C6 machine. About 2x105 cells were washed 534 

twice in Robosep buffer (#20104, Stemcell Technologies) and fixed in 300 µl CellFix buffer 1X (#340181, 535 

BD) for at least 3h at 4°C. The GFP was then monitored by FACS in the FL-1 channel to monitor infection 536 

success. Analysis was carried out using FlowJo software. 537 

 538 

Bioinformatic analyses  539 

The analyses described in this section apply  to both intracellular transcripts (host mRNAs and vRNAs) and 540 

virion-incorporated RNA data.  541 

m6A and gene expression quantification 542 

The m6A modification and input libraries underwent a first quality check with FASTQC 543 

[http://www.bioinformatics.babraham.ac.uk/projects/fastqc/]. FASTQ files were trimmed with Atropos 544 

(36). The following adapter sequences - AGATCGGAAGAG, CTCTTCCGATCT, AACACTCTTTCCCT, 545 

AGATCGGAAGAGCG, AGGGAAAGAGTGTT, CGCTCTTCCGATCT  - were removed after trimming of low-546 

quality ends (a Phred quality cutoff of 5 has been applied) as specified by the manufacturer 547 

(https://support.illumina.com/downloads/illumina-adapter-sequences-document-548 

1000000002694.html). Only reads with a minimum length of 25 base pairs after trimming were retained.  549 

Trimmed reads were aligned to an assembly of the Hg38 human genome and HIV [Integrated linear pNL4-550 

3∆Env-GFP] genome. The software used for the alignment was HISAT2 (37). Aligned reads were indexed 551 

and sorted with SAMtools (38). 552 

Post-alignment quality of the reads was performed with SAMtools stat and Qualimap 2 (39). Quality 553 

measures have been collected and summarized with multiQC (40).  554 

HIV genome has homologous 634 bp sequences in the 5’ LTR and 3’ LTR. Multimapping reads from 5’ LTR 555 

have been realigned to the corresponding 3’ LTR region with SAMtools.  556 

Abundance quantification of transcripts on input libraries has been performed with Salmon (41). HIV 557 

expression level has been quantified by directly counting reads mapping to the viral genome.  558 

m6A peaks were identified with the peak calling software MACS2 (v 2.1.2)(42). Caution was applied in the 559 

choice of MACS2 running parameters, to allow the toll to correctly work on RNAseq data. In RNA-Seq data 560 

the peak calling can be affected by the gene expression level, and short exons may potentially be miscalled 561 

as peaks. Hence, signal from input must be subtracted from m6A signal, without the the smoothing 562 

routinely applied by MACS2 to DNA based data.   563 

‘callpeak’ sub-command from MACS2 was run with the following parameters: –keep-dup auto (controls 564 

the MACS2 behavior towards duplicate reads, ‘auto’ allows MACS to calculate the maximum number of 565 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://support.illumina.com/downloads/illumina-adapter-sequences-document-1000000002694.html
https://support.illumina.com/downloads/illumina-adapter-sequences-document-1000000002694.html
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reads at the exact same location based on binomial distribution using 1e-5 as p-value cutoff), -g 2.7e9 566 

(size of human genome in bp), -q 0.01 (minimum FDR cutoff to call significant peaks), --nomodel (to bypass 567 

building the shifting model, which is tailored for ChIP-Seq experiments), --slocal 0 –llocal 0 (setting these 568 

2 parameters to 0 allows MACS2 to directly subtract, without smoothing, the input reads from the m6A 569 

reads), --extsize 100 (average length of fragments in bp), -B -SPMR (to generate library size normalized 570 

bedGraph track for visualization).  571 

In order to compare infected vs non-infected samples, the differential peak calling sub-command of 572 

MACS2, ‘bdgdiff’, was used. ‘bdgdiff’ takes as inputs the bedGraph files generated by ‘callpeak’. First, we 573 

run ‘callpeak’ with the same parameters as above, but without the -SPMR option (output unnormalized 574 

tracks), which is not compatible with ‘bdgdiff’. Then, for each time point we run the comparison of 575 

infected versus non-infected samples with ‘bdgdiff’, subtracting the respective input signal from the m6A 576 

signal and providing the additional parameters -g 60 -l 120. 577 

 578 

Bisulfite conversion analyses 579 

Cutadapt (43) was applied for read trimming, using parameters of –minimum-length=25 and the adapter 580 

“AGATCGGAAGAGCACACGTCTGAAC”. Trimmed reads were subsequently reverse complemented using 581 

seqkit (44).  582 

Quality control was performed by employing FastQC to examine samples for (a) poor read quality, and (b) 583 

contamination of which there was no supporting evidence.  584 

The application meRanGh from the meRanTK package (20) was leveraged to make an index file for 585 

alignment consisting of the hg38 reference genome supplemented with the HIV genome. Aligning again 586 

employed meRanGh with parameters enabling unmapped reads (-UN), multi-mapped reads (-MM) to be 587 

written to output files. Additionally, the output bedGraph (-bg) was produced.  588 

Reported Regions were filtered by those with at least a 10 read coverage (-mbgc 10). To account for HIV 589 

LTR regions being multi-mapped, and not thus not being present in the alignment output file, Sambamba 590 

(45) merge was employed to filter reads in the HIV genome upstream of the 8500bp locus and append 591 

them to the final alignment.  592 

FeatureCounts (46) was employed at the exon and CDS level for the hg38 and HIV genomes, respectively.  593 

Methylation calling was completed via the meRanCall tool, provided by meRanTK, with a read length (-rl) 594 

parameter of 126, an error interval of .1 used for the methylation rate p-value calculation (-ei), an 595 

expected conversion rate of .99 (-cr).  MeRanCompare was employed with a significance value of .01 as 596 

the minimal threshold for reporting. For its size factors parameter, MeRanTK’s included utility 597 
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estimateSizeFactors.pl was employed on each of the time points, and produced values of (.8102, 1.2342), 598 

(1.1894,.8408), (0.6562,1.5240) for (not infected, infected) across time points 12, 24, and 36h 599 

respectively. 600 

 601 

Differential Gene Expression (DGE) analysis 602 

Transcript abundance and counts estimated by Salmon for the input samples were imported into an R 603 

session (version 3.5.1) using the package tximport (47). The same package was used to summarize 604 

transcript level expression at the gene level.  605 

Low count genes have been removed with the method ‘filtered.data’ from the package NOISeq (48). 606 

‘filtered.data’ method 1 removes those genes that have an average expression per condition less than 3 607 

CPM (Counts Per Millions) and a coefficient of variation per condition higher than cv.cutoff = 100 (in 608 

percentage) in all the conditions. 609 

The filtered gene table was the processed with the package for differential gene expression analysis (49). 610 

First, exploratory PCA plots were generated with the PCA plot function on counts transformed with the 611 

rlog method in DESeq2. Then, differential expressed genes were called with an adjusted (Benjamini-612 

Hochberg method) p-value threshold of 0.01. To takeinto account the effect of cell culture time together 613 

with that of HIV infection, we asked DESeq2 to fit a Generalize Linear Model (GLM) which included both 614 

effects: design = ~ infection + time. Two lists of differentially expressed (DE) genes according to infection 615 

and time were thus obtained. To further separate the effect of the HIV infection from the time one, we 616 

produced a list of ‘HIV only’ DE genes, by removing from the list of infection related DE genes those in 617 

common with the list of time-related DE genes.  618 

A PCA plot with this ‘HIV only’ DE gene list was produced in order to highlight the effect of HIV infection, 619 

and heatmaps with the gene expression level of these genes were also drawn. 620 

 621 

m6A differential peak calling analysis 622 

MACS2 ‘callpeak’ generated a list of peaks for each time point and each infection status (infected and 623 

non-infected). MACS2 ‘‘bdgdiff’ generated 3 lists (common peaks, up and down regulated upon HIV 624 

infection) for each time point comparison. These lists of peaks were further processed and analyzed with 625 

the R package diffbind (50), and annotation with overlapping genes was provided by the package 626 

ChIPpeakAnno (51). 627 

To reduce the number of false positives, only the peaks called by both MACS2 methods (‘callpeak’ and 628 

‘bdgdiff’) were retained in the following analyses. For purpose, for each time point and infection status, 629 
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we intersected the list produced by ‘callpeak’ with the corresponding lists produced by ‘bdgdiff’ (the 630 

common peaks and condition specific peaks). We thus obtained a high confidence peak list for each time 631 

point and condition. 632 

We defined a measure for peak intensity based on the number of reads overlapping with each peak. For 633 

counting the overlapping reads, the function dba.count from DiffBind was used. First, we created a 634 

consensus peak set with the union of the high confidence peak lists. Reads overlapping with a span of 100 635 

bp around the summit of the peaks in the consensus were counted, normalization factors were computed 636 

using edgeR TMM method (52), and the reads in the m6a input were subtracted to separate methylation 637 

from expression level effects. The normalized counts at each peak, which we will call peak scores, were 638 

used to generate the PCA plot, the peak distribution along gene length, and heatmaps. 639 

The presence of the m6A binding motif ("DRACH") was assessed using the function scan_sequences from 640 

the package “universalmotif” (53) over the consensus list of peaks. 641 

An unsupervised motif search was also performed. From the consensus peak set, we extracted the 642 

nucleotide sequence (from the reference genome Hg38) of an interval of 10bp upstream and 10bp 643 

downstream from the center of each peak. The list of 17657 sequences was used as input for the tool 644 

DREME (54), from MEME suite (5.1.0)(55), which performed the motif discovery. 645 

Peak distributions along genes were computed by dividing each gene in 30 intervals and adding up the 646 

scores of peaks belonging to each interval for all genes (in other words, computing the sum of the peaks 647 

in each interval weighed by the scores). The distributions were plotted at each time point and condition.    648 

In order to compare the modification of m6A RNA methylation specific to HIV infection, we intersected 649 

the up (down) regulated peak lists of all 3 time points, and, for late infection response, at 24h and 36h 650 

time point only. We summarized these results at the gene level (obtaining a ‘gene methylation score’), by 651 

adding up the scores of the peaks in each gene. The methylation score of up and down methylated genes 652 

upon HIV infection were plotted as heatmaps. 653 

 654 

m5C differential methylation calling analysis 655 

The m5C data analysis follows the line of the m6A one described above. The lists of methylated C generated 656 

by meRanCall tool were further processed and analyzed with the R package DiffBind and annotation for 657 

overlapping genes was provided by the package ChIPpeakAnno. 658 

In order to reduce the number of false positives in m5C called bases, beside the adjusted p-value threshold 659 

of 0.01 applied by meRanCall, we introduced an extra threshold on coverage, asking that the retained m5C 660 
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bases having at least 30 read coverage. This number was adjusted by the total number of reads in each 661 

library to have an even filter across samples. 662 

Furthermore, a consensus set of m5C sites was created by the union of the m5C called bases from all 663 

samples, asking that a methylated site appears in at least 2 samples. The methylation rate (number of 664 

methylated C over total number of C) at each base was used as methylation intensity score to generate 665 

the PCA plot, the m5C distribution along gene length, and heatmaps.      666 

A motif discovery was performed with MEME (5.1.0)(55). A list of 788 sequences of 10 bp surrounding 667 

both sides of methylated bases was input to MEME. This list is a high confidence list of methylated sites 668 

made by joining (union) the bases with a methylation rate greater than 0.8 from all samples.  669 

m5C distributions along genes were computed by dividing each gene in 30 intervals and adding up the 670 

methylation rate of m5C belonging to each interval for all genes (in other words, computing the sum of 671 

the m5C sites in each interval weighed by the methylation rate). The distributions were plotted at each 672 

time point and condition. 673 

In order to compare the modification of m5C RNA methylation specific to HIV infection, we intersected 674 

the up (down) regulated peak lists of all 3 time points, and, for late infection response, at 24h and 36h 675 

time point only. We summarized these results at the gene level (obtaining a ‘gene methylation score’), by 676 

adding up the methylation rates of the bases in each gene. The methylation scores of up and down 677 

methylated genes upon HIV infection were plotted as heatmaps. 678 

  679 
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Supplementary Figures and Data 680 

Supplementary Figures 681 

 682 

 683 
Figure S1: Time and HIV infection effects on gene expression. Principal component analysis (PCA) 684 

representing gene expression variation across samples, in presence (A) or absence (B) of HIV transcripts 685 

and upon removal of time effect (C). HIV-infected samples (HIV) are represented as green filled circles, 686 

non-infected samples (NI) as grey filled squares. Increasing timepoints (12h, 24h, 36h) are depicted by 687 

increasing color shading. 688 

 689 
Figure S2. M6A quality controls. (A) Representative Fragment Analyzer outcome assessing the size and 690 

the quantity of RNA fragments recovered after MeRIP-Seq with a specific anti-m6A antibody (left) and with 691 

the non-specific anti-IgG antibody (right). The x-axis represents the nucleotide size of the peak, while the 692 

y-axis quantifies the intensity of the peak in Relative Fluorescence Units (RFU). LM: low marker reference. 693 

(B) Sequencing read analysis. Amount of raw reads (red), reads aligning to rRNA (grey), clean pass filter 694 

reads (blue) and aligned reads (green) retrieved for input and m6A-immunoprecipitated (IP) samples. HIV: 695 

HIV-infected samples; NI: non-infected mock samples. 696 
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Figure S3. m6A peak distribution. (A)Representation of the two most enriched m6A motif in our dataset 700 

(B) Frequency of m6A methylation along the gene in each sample. Histogram plots showing on the x-axis 701 

genes normalized for their length and divided into 30 bins, and for each bin fraction of the gene, the 702 

number of m6A peaks weighted for the peak intensity (peak surface) was assessed. (C) Frequency of m6A 703 

peak distribution according to exon width. Exons were binned according to their width (x-axis). The 704 

number of m6A peaks (y-axis) per binned exon width was normalized by the exon width.  705 

 706 
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Figure S4. M5C quality controls. (A) Schematic representation of the evaluation of bisulfite conversion 707 

efficiency by qPCR. The 100% methylated C4447 of the 28S human rRNA was used as a positive control to 708 

evaluate the efficacy of bisulfite conversion treatment. Purified mRNA was spiked-in with polyA-depleted 709 

RNA, to ensure rRNA representation, and exposed to bisulfite treatment, triggering C to U conversion in 710 

absence of methylation while methylated C (pink hexagone mark) were protected and unmodified. A 711 

fraction of the bisulfite converted RNA was subjected to RT-PCR in order to amplify a 200 bp region of the 712 

28SrRNA flanking C4447 for Sanger sequencing. (B) Electropherogram of a representative sequence 713 

retrieved after RT-qPCR. The blue arrow highlights the conserved methylated C residue at position 4447, 714 

identified as a C upon sequencing (top panel). In contrast, non-methylated C residues (blue in the 715 

reference sequence on the bottom panel) are converted to T (green nucleotides, as shown on the top 716 

panel) upon bisulfite treatment, RT and sequencing. (C) Amount of raw reads (red) and clean pass filter 717 

reads (blue) retrieved for the bisulfite converted samples. HIV: HIV-infected samples; NI: non-infected 718 

mock samples. (D) Representation of the read per base content along every position of the read. On the 719 

x-axis is depicted the position in the read, on the y-axis the total coverage proportion of each base. (E) 720 

Conversion rate assessment. Non-methylated ERCC control sequences were spiked in each sample to 721 

assess the conversion rate. Percentage of successfully converted C are represented in green, non-722 

converted C are represented in red. The average conversion rate across samples was 99.47%. 723 
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 724 
Figure S5. Frequency of m5C methylation. Histogram samples showing the number of C residues (y-axis) 725 

and their methylation rate (x-axis), i.e. the fraction of non-converted (methylated) C, for each sample 726 

(infection condition and time condition). 727 

 728 
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 729 
 730 

Figure S6. M5C distribution. Frequency of m5C methylation in each sample along genes, normalized by 731 

their gene length. Histogram plots showing on the x-axis genes normalized for their length and divided 732 

into 30 bins, and for each bin fraction of the gene, the number of m5C residues weighted for the 733 

methylation rate. 734 
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 735 
 736 

Figure S7. PC analysis of m5C across samples according to methylation rate. Different filters for 737 

methylation were considered: methylation rate >20% (A), >50% (B) and >80% (C).  HIV-infected samples 738 

are represented as green filled circles, non-infected samples as grey squares. Timepoints are depicted by 739 

color shading. HIV transcripts are not included. 740 

  741 
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 742 
 743 

Figure S8. m6A and m5C profile in virions. Virion RNA was extracted either from concentrated and purified 744 

supernatant (concentrated) or from untouched supernatant (supernatant). HIV genome organization is 745 

depicted on top of the panels and common methylation marks are indicated above the genomes as 746 

horizontal green rectangles (A) or pink triangles (B), respectively. Detailed read coverage is displayed for 747 

each individual sample as tracks below the genome. (A) Identification of m6A peaks in HIV virion RNA at 748 

36h post-infection. Input (gray) and m6A immunoprecipitated samples (green) are shown. Putative m6A 749 

peak calling was performed with MACS2 package after subtraction of the input background (overlay). 750 

Statistically significant peaks are highlighted by a red box, with color shading proportional to the q value 751 

(m6A peak track). (B) Identification of m5C on HIV virion RNA. Coverage of HIV genome upon conversion 752 

(gray) and detection of m5C (pink) are shown. M5C are presented as proportion of converted C. Bar height 753 

is proportional to the percentage of methylated C in the reads covering the position. The track height is 754 

set to 100%. M5C calling was performed with MACS2 package. Statistically significant residues are 755 

highlighted by a red box, with color shading proportional to the q value.  756 

  757 
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Supplementary Data 758 

Table S1. Normalized gene counts and differential gene expression (DGE) analysis 759 

Table S2: List of m6A detected peaks  760 

Table S3: List of differentially methylated m6A peaks 761 

Table S4: List of m5C detected residues 762 

Table S5: List of m5C differentially methylated residues 763 

Table S6: m6A and m5C methylation detected in HIV RNA molecules isolated from infected cells 764 

Table S7: m6A and m5C methylation detected in HIV RNA molecules isolated from viral particles 765 
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